首页 / 财富中文网 / 正文

美国就业市场新趋势:白领失业人数占比首次超过蓝领

财富中文网 2025-08-14 00:33:17

美国就业市场新趋势:白领失业人数占比首次超过蓝领
非常规认知型职业的失业人员占比首次超过非常规体力劳动型职业的失业人员占比。图片来源:Getty Images

• 人工智能对就业市场的影响正逐渐在数据中显现,为其在下次经济衰退中可能发挥的作用提供了线索。摩根大通(JPMorgan)警告称,企业在经济衰退期间历来倾向于采用自动化技术,而人工智能可能会对白领知识工作者造成尤为沉重的打击。

企业在经济衰退期间通常会借助自动化手段达成“以少博多”的目标,但生成式人工智能的出现或将在下次经济衰退时颠覆以往赢家与输家的传统格局。

摩根大通高级美国经济学家穆拉特·塔斯奇(Murat Tasci)上周二在一份报告中表示,以往,白领知识工作者并未因经济衰退引发的大规模裁员或复苏期的失业潮而受到显著冲击,但下一次的情形或许会截然不同。

他写道:“更确切地讲,我们认为,在下次经济衰退期间,人工智能工具与应用在工作场所的采用速度与覆盖范围,可能会导致以非常规认知任务为主的职业出现大规模替代,因此,非常规认知型职业将受到波及。”

塔斯奇指出,自20世纪80年代末以来,受自动化影响,专注于常规任务的岗位持续减少。这包括“常规认知型职业”,如销售和办公室工作,以及“常规体力劳动型职业”,如建筑、维护、生产和运输等领域的工作。

过去四十年间,常规工作岗位在经济衰退后恢复所需时间越来越长。事实上,常规职业就业水平至今仍未恢复到全球金融危机前的峰值。

相比之下,“非常规认知型职业”——如科学家、工程师、设计师以及律师等白领知识工作者——其周期性波动幅度要小得多,就业率几乎未曾跌至经济衰退前的峰值水平以下。塔斯奇观察到,在大多数情况下,这些职业还引领了此前的就业复苏进程。

失业模式中的“不祥”信号

然而,失业趋势前所未有的转变或许预示着,在人工智能时代,白领知识工作者将面临截然不同的命运。

非常规认知型职业的失业人员占比首次超过非常规体力劳动型职业的失业人员(如医疗支持、个人护理和食品制备等职业)占比。

塔斯奇称,“从过往数据来看,非常规认知型职业的失业人员占比一直处于最低水平,然而直至近期,这一情况才发生改变”,他还称这是一个“不祥之兆”。“这一变化趋势可能预示着,这些劳动者未来面临的失业风险正不断攀升。”

与此同时,越来越多证据表明,人工智能正导致初级岗位数量缩减,而这些岗位通常由应届大学毕业生填补。

他解释道,与此同时,人工智能并未给常规型工作岗位或非常规体力劳动型工作岗位带来更多额外风险,因为后者仍然需要更多的实际人际互动。

白领知识工作者面临的威胁加剧,给经济带来的风险也比以往更为严峻,因为他们目前在总就业人数中的占比接近45%,而1980年代初这一比例仅为30%。

塔斯奇警告称:“这些劳动者面临的失业风险急剧攀升,复苏前景极为黯淡,这可能会导致下一轮劳动力市场低迷状况看起来格外严峻。以常规型职业增长疲软为主导的复苏期失业现象可能会再次上演,此次主要归因于非常规认知型职业复苏乏力。”

但其他人对人工智能与就业市场的看法并不那么悲观。科技投资者戴维·萨克斯(David Sacks)同时担任白宫人工智能和加密货币事务负责人,他试图驳斥部分关于通用人工智能的“末日预言”。

上周六他在X平台上发文称,“人类与人工智能存在明确的分工”,这意味着人们仍需为人工智能模型提供必要的背景信息、给出详尽的提示,并对其输出结果进行验证。

萨克斯补充道:“这意味着,关于失业的末日预言和通用人工智能本身一样,都存在过度炒作的嫌疑。相反,‘你不会因人工智能而失业,而是会不敌那些比你更擅长使用人工智能的人’这一真知灼见依然成立。”(*)

译者:中慧言-王芳

• 人工智能对就业市场的影响正逐渐在数据中显现,为其在下次经济衰退中可能发挥的作用提供了线索。摩根大通(JPMorgan)警告称,企业在经济衰退期间历来倾向于采用自动化技术,而人工智能可能会对白领知识工作者造成尤为沉重的打击。

企业在经济衰退期间通常会借助自动化手段达成“以少博多”的目标,但生成式人工智能的出现或将在下次经济衰退时颠覆以往赢家与输家的传统格局。

摩根大通高级美国经济学家穆拉特·塔斯奇(Murat Tasci)上周二在一份报告中表示,以往,白领知识工作者并未因经济衰退引发的大规模裁员或复苏期的失业潮而受到显著冲击,但下一次的情形或许会截然不同。

他写道:“更确切地讲,我们认为,在下次经济衰退期间,人工智能工具与应用在工作场所的采用速度与覆盖范围,可能会导致以非常规认知任务为主的职业出现大规模替代,因此,非常规认知型职业将受到波及。”

塔斯奇指出,自20世纪80年代末以来,受自动化影响,专注于常规任务的岗位持续减少。这包括“常规认知型职业”,如销售和办公室工作,以及“常规体力劳动型职业”,如建筑、维护、生产和运输等领域的工作。

过去四十年间,常规工作岗位在经济衰退后恢复所需时间越来越长。事实上,常规职业就业水平至今仍未恢复到全球金融危机前的峰值。

相比之下,“非常规认知型职业”——如科学家、工程师、设计师以及律师等白领知识工作者——其周期性波动幅度要小得多,就业率几乎未曾跌至经济衰退前的峰值水平以下。塔斯奇观察到,在大多数情况下,这些职业还引领了此前的就业复苏进程。

失业模式中的“不祥”信号

然而,失业趋势前所未有的转变或许预示着,在人工智能时代,白领知识工作者将面临截然不同的命运。

非常规认知型职业的失业人员占比首次超过非常规体力劳动型职业的失业人员(如医疗支持、个人护理和食品制备等职业)占比。

塔斯奇称,“从过往数据来看,非常规认知型职业的失业人员占比一直处于最低水平,然而直至近期,这一情况才发生改变”,他还称这是一个“不祥之兆”。“这一变化趋势可能预示着,这些劳动者未来面临的失业风险正不断攀升。”

与此同时,越来越多证据表明,人工智能正导致初级岗位数量缩减,而这些岗位通常由应届大学毕业生填补。

他解释道,与此同时,人工智能并未给常规型工作岗位或非常规体力劳动型工作岗位带来更多额外风险,因为后者仍然需要更多的实际人际互动。

白领知识工作者面临的威胁加剧,给经济带来的风险也比以往更为严峻,因为他们目前在总就业人数中的占比接近45%,而1980年代初这一比例仅为30%。

塔斯奇警告称:“这些劳动者面临的失业风险急剧攀升,复苏前景极为黯淡,这可能会导致下一轮劳动力市场低迷状况看起来格外严峻。以常规型职业增长疲软为主导的复苏期失业现象可能会再次上演,此次主要归因于非常规认知型职业复苏乏力。”

但其他人对人工智能与就业市场的看法并不那么悲观。科技投资者戴维·萨克斯(David Sacks)同时担任白宫人工智能和加密货币事务负责人,他试图驳斥部分关于通用人工智能的“末日预言”。

上周六他在X平台上发文称,“人类与人工智能存在明确的分工”,这意味着人们仍需为人工智能模型提供必要的背景信息、给出详尽的提示,并对其输出结果进行验证。

萨克斯补充道:“这意味着,关于失业的末日预言和通用人工智能本身一样,都存在过度炒作的嫌疑。相反,‘你不会因人工智能而失业,而是会不敌那些比你更擅长使用人工智能的人’这一真知灼见依然成立。”(*)

译者:中慧言-王芳

• Signs that artificial intelligence is weighing on the job market are continuing to creep into the data, offering clues on how AI could play a role the next time the economy slips into a downturn. Businesses have historically leaned on automation during recessions, and AI could hit white-collar knowledge workers especially hard, JPMorgan warned.

Businesses trying to do more with less have historically leaned on automation during recessions, but the advent of generative AI could scramble the typical pattern of winners and losers when the next downturn strikes.

While white-collar knowledge workers have previously not suffered from severe recession-induced layoffs or jobless recoveries, the next time could be different, JPMorgan senior U.S. economist Murat Tasci said in a note Tuesday.

“More specifically, we think that during the course of the next recession the speed and the breadth of the adoption of the AI tools and applications in the workplace might induce large-scale displacement for occupations that consist of primarily non-routine cognitive tasks; henceforth non-routine cognitive occupations,” he wrote.

Since the late 1980s, jobs that focus on routine tasks have been disappearing because of automation, Tasci said. That includes “routine cognitive occupations” like sales and office jobs, as well as “routine manual occupations” such as jobs in construction, maintenance, production and transportation.

Over the past four decades, it’s taken longer and longer for routine jobs to bounce back after recessions. In fact, employment in routine occupations has still not returned to its peak before the Great Financial Crisis.

By contrast, “non-routine cognitive occupations”—white-collar knowledge workers like scientists, engineers, designers, and lawyers—were much less cyclical and barely dipped below pre-recession peaks. They have also led prior employment recoveries most of the time, Tasci observed.

‘Ominous’ sign in unemployment pattern

But an unprecedented shift in unemployment trends could indicate that white-collar knowledge workers will suffer a much different fate in the age of AI.

For the first time ever, workers from non-routine cognitive occupations now account for a greater share of the unemployed than workers from non-routine manual jobs (i.e. healthcare support, personal care, and food preparation).

“Workers who were last employed in non-routine cognitive jobs have always accounted for the smallest share of the unemployed in the data, until recently,” Tasci said, calling it an “ominous” sign. “This changing pattern might be indicative of rising unemployment risk for these workers going forward.”

That’s as evidence has been mounting that AI is already limiting the number of entry-level jobs that have typically been filled by recent college graduates.

Meanwhile, AI doesn’t pose much more additional risk to routine jobs or to non-routine manual jobs that will still require more physical personal interaction, he explained.

The increased threat to white-collar knowledge workers also poses a greater risk to the economy than in the past as they now account for nearly 45% of total employment, up from 30% in the early 1980s.

“A much larger unemployment risk and anemic recovery prospects for these workers might cause the next labor market downturn to look pretty dismal,” Tasci warned. “The jobless recoveries led by anemic growth in routine occupations might repeat again, this time primarily due to an anemic recovery in non-routine cognitive occupations.”

But others aren’t so gloomy about AI and the job market. Tech investor David Sacks, who also serves as the White House czar on AI and crypto, sought to debunk several “Doomer narratives” about artificial general intelligence.

In an X post on Saturday, he said there’s a “clear division of labor between humans and AI,” meaning that people still need to feed AI models necessary context, give them extensive prompts, and verify their output.

“This means that apocalyptic predictions of job loss are as overhyped as AGI itself,” Sacks added. “Instead, the truism that ‘you’re not going to lose your job to AI but to someone who uses AI better than you’ is holding up well.”

*