首页 / 财富中文网 / 正文

一家主营推土机租赁公司如何利用人工智能每周节省3000小时

财富中文网 2025-07-27 21:33:50

一家主营推土机租赁公司如何利用人工智能每周节省3000小时
图片来源:Illustration by Simon Landrein

麦肯锡的一份报告显示,尽管建筑业每年的资金流动量达10万亿美元,然而在过去20年里,其平均生产率增长率仅为1%,而制造业为3.6%,全球经济总量为2.8%。在一项针对600名美国劳动者的调查中,建筑业在创新认知层面排名垫底,被认为是“技术能力最为薄弱”的10个行业之一。这种滞后状况带来了严重后果:牛津大学赛德商学院(Saïd Business School at Oxford University)的研究发现,全球超90%的基础设施项目要么延期,要么超支。而一项针对600名建筑行业领导者的调查显示,仅在美国,每年因效率低下造成的浪费就达1770亿美元。

为解决这一领域的一小部分痛点,总部位于加利福尼亚州的BigRentz——自2012年起,该公司为美国各地的承包商匹配叉车、反铲挖土机和挖掘机等重型设备的租赁场地——对其业务进行了全面革新,从仍依赖电话运营的模式转变为完全基于内部自主研发的人工智能系统运行。其采用的模型是传统机器学习,这表明除大型语言模型外,早期人工智能技术仍然具有价值。如今,该公司正推出一款面向大型承包商的独立软件平台,该平台由相同的人工智能系统提供支持,允许客户根据现有供应商名单进行更智能的采购。

“我提到了电子表格,但过去承包商管理供应商关系的方式还包括邮件链、短信、电话以及纸质记录,”BigRentz首席执行官斯科特·坎农(Scott Cannon)表示。“这一行业效率极低——以年度生产力提升幅度来衡量——且利润微薄。因此,助力承包商做出更优决策,将为他们带来竞争优势。”

一切始于数据战略

坎农表示,自创立之初,公司便一直计划利用将要处理的海量数据,不过在BigRentz成立之际,尚不清楚具体该如何进行。在日常业务中,公司会跟踪每一次客户互动以及相关数据点。例如,当承包商提交租赁请求时,BigRentz的销售人员会记录设备类型、施工地点、租赁日期需求以及任何特殊要求(如交付限制或所需配件)。随后,该员工会联系当地供应商,确认能否完成订单,并为承包商匹配可供货的供应商。BigRentz将所有数据存储起来以备后续使用,进而构建起一个内容丰富的信息库,涵盖供应商能否完成订单的决策信息、价格上涨情况、服务费用和客户反馈等内容。

2018年,该公司决定开始深入分析这些数据。团队创建了覆盖全美、精确到平方公里的网格,以展示特定供应商的配送范围、配送时间及成本(涵盖桥梁、通行费及其他意外支出),进而确定不同地点的收费标准。这一切都是手动完成的,通常是在白板上进行,繁琐的工作流程促使公司寻求更为高效的解决方案。

“试图挖掘这些信息并加以利用所面临的挑战,迫使我们决定采用人工智能。”坎农表示。

新系统……新公司

多年来,BigRentz逐步组建了技术团队——包括聘请数据科学家、全栈工程团队和质量保证团队——并围绕不同数据集构建机器学习模型。2022年,该公司将这些模型整合,打造出全新的人工智能系统SiteStack,该系统完全基于内部自主研发的技术。该公司于1月正式在内部推出该系统,以自动选定供应商。如今,当客户提交租赁请求时,无需团队成员逐个致电数十位供应商来完成订单,而是由该系统分析数百万条历史定价和履约记录,根据成本、距离和可靠性对供应商进行实时排序,并自动选定最优供应商。

坎农表示,随着获取更多信息用于训练系统,该系统的性能实现显著提升;这套人工智能系统最终建立在5亿美元销售数据及超10亿美元交互数据的基础之上(后者指公司未达成的销售交易,不过,这些交易仍提供了极具价值的数据)。坎农称,这些数据包括超1300万条针对订单请求的供应商选择决策记录、数十个定价数据集、客户反馈以及数百万个其他数据点(这些数据点能预测总成本或供应商行为)。

由机器学习系统为承包商的特定需求确定最佳供应商匹配,与该公司以往销售人员整天打电话联系租赁场地的流程相比,堪称巨大转变。经历了这项人工智能项目后,如今该公司与多年前成立时相比,已截然不同。

“公司内部两种不同文化曾一度存在紧张关系。(构建平台的团队所代表的)技术文化与市场端的销售和营销文化存在差异,这始终是个挑战。但由于自动化,我们(随着时间的推移逐步)大幅削减了员工数量,如今公司本质上已蜕变成一家科技企业。”坎农说,并补充道,在一个抵触变革的行业开展工作是最大阻碍。

人工智能是完成任务的最佳工具

坎农表示,自1月份新系统投入使用以来,BigRentz在租赁服务采购环节每周节省超3000小时(相当于80多个岗位的工作量),错误率降低了40%。如今,该公司正面向客户推出同名系统SiteStack,希望借此将自身实现的效率提升和成本节约进一步传递给客户。此次推出再次改变了公司的定位——从一家为承包商和供应商牵线搭桥的公司,转变为一家向建筑公司出售软件的公司,让客户能够凭借前所未有的信息和控制权自行完成相关工作。

新平台采用相同的底层人工智能技术,但允许客户输入其已建立合作关系的供应商信息。当客户搜索租赁服务并获得排序结果时,可查看所有供应商在该特定租赁服务中的对比情况,以及当前系统中尚未涵盖的其他供应商信息。

坎农称,其理念是简化行业定价模式并提高透明度。他表示,当前行业定价体系呈现出碎片化特征,且存在“刻意营造的不透明性”,一些供应商按日计费,另一些按周计费,再加上其他种种因素,导致难以进行直接比较。

“我们试图解决的问题在不断演变,”坎农说,“所以,不仅仅是获取设备的问题——虽说这确实是个问题,但算不上大问题——此处无意双关。真正的大问题是选择特定供应商的决策过程。起初,我们并没有打算围绕人工智能打造公司。只是事实证明,人工智能是达成这一目标的最佳工具。”

欲了解更多关于人工智能在新兴行业的广泛应用情况,请查阅《财富》杂志最新发布的AIQ特别报告,该报告收录了各行业企业如何利用人工智能的案例,以及该技术如何重塑其所在领域的详尽报道。 (*)

译者:中慧言-王芳

麦肯锡的一份报告显示,尽管建筑业每年的资金流动量达10万亿美元,然而在过去20年里,其平均生产率增长率仅为1%,而制造业为3.6%,全球经济总量为2.8%。在一项针对600名美国劳动者的调查中,建筑业在创新认知层面排名垫底,被认为是“技术能力最为薄弱”的10个行业之一。这种滞后状况带来了严重后果:牛津大学赛德商学院(Saïd Business School at Oxford University)的研究发现,全球超90%的基础设施项目要么延期,要么超支。而一项针对600名建筑行业领导者的调查显示,仅在美国,每年因效率低下造成的浪费就达1770亿美元。

为解决这一领域的一小部分痛点,总部位于加利福尼亚州的BigRentz——自2012年起,该公司为美国各地的承包商匹配叉车、反铲挖土机和挖掘机等重型设备的租赁场地——对其业务进行了全面革新,从仍依赖电话运营的模式转变为完全基于内部自主研发的人工智能系统运行。其采用的模型是传统机器学习,这表明除大型语言模型外,早期人工智能技术仍然具有价值。如今,该公司正推出一款面向大型承包商的独立软件平台,该平台由相同的人工智能系统提供支持,允许客户根据现有供应商名单进行更智能的采购。

“我提到了电子表格,但过去承包商管理供应商关系的方式还包括邮件链、短信、电话以及纸质记录,”BigRentz首席执行官斯科特·坎农(Scott Cannon)表示。“这一行业效率极低——以年度生产力提升幅度来衡量——且利润微薄。因此,助力承包商做出更优决策,将为他们带来竞争优势。”

一切始于数据战略

坎农表示,自创立之初,公司便一直计划利用将要处理的海量数据,不过在BigRentz成立之际,尚不清楚具体该如何进行。在日常业务中,公司会跟踪每一次客户互动以及相关数据点。例如,当承包商提交租赁请求时,BigRentz的销售人员会记录设备类型、施工地点、租赁日期需求以及任何特殊要求(如交付限制或所需配件)。随后,该员工会联系当地供应商,确认能否完成订单,并为承包商匹配可供货的供应商。BigRentz将所有数据存储起来以备后续使用,进而构建起一个内容丰富的信息库,涵盖供应商能否完成订单的决策信息、价格上涨情况、服务费用和客户反馈等内容。

2018年,该公司决定开始深入分析这些数据。团队创建了覆盖全美、精确到平方公里的网格,以展示特定供应商的配送范围、配送时间及成本(涵盖桥梁、通行费及其他意外支出),进而确定不同地点的收费标准。这一切都是手动完成的,通常是在白板上进行,繁琐的工作流程促使公司寻求更为高效的解决方案。

“试图挖掘这些信息并加以利用所面临的挑战,迫使我们决定采用人工智能。”坎农表示。

新系统……新公司

多年来,BigRentz逐步组建了技术团队——包括聘请数据科学家、全栈工程团队和质量保证团队——并围绕不同数据集构建机器学习模型。2022年,该公司将这些模型整合,打造出全新的人工智能系统SiteStack,该系统完全基于内部自主研发的技术。该公司于1月正式在内部推出该系统,以自动选定供应商。如今,当客户提交租赁请求时,无需团队成员逐个致电数十位供应商来完成订单,而是由该系统分析数百万条历史定价和履约记录,根据成本、距离和可靠性对供应商进行实时排序,并自动选定最优供应商。

坎农表示,随着获取更多信息用于训练系统,该系统的性能实现显著提升;这套人工智能系统最终建立在5亿美元销售数据及超10亿美元交互数据的基础之上(后者指公司未达成的销售交易,不过,这些交易仍提供了极具价值的数据)。坎农称,这些数据包括超1300万条针对订单请求的供应商选择决策记录、数十个定价数据集、客户反馈以及数百万个其他数据点(这些数据点能预测总成本或供应商行为)。

由机器学习系统为承包商的特定需求确定最佳供应商匹配,与该公司以往销售人员整天打电话联系租赁场地的流程相比,堪称巨大转变。经历了这项人工智能项目后,如今该公司与多年前成立时相比,已截然不同。

“公司内部两种不同文化曾一度存在紧张关系。(构建平台的团队所代表的)技术文化与市场端的销售和营销文化存在差异,这始终是个挑战。但由于自动化,我们(随着时间的推移逐步)大幅削减了员工数量,如今公司本质上已蜕变成一家科技企业。”坎农说,并补充道,在一个抵触变革的行业开展工作是最大阻碍。

人工智能是完成任务的最佳工具

坎农表示,自1月份新系统投入使用以来,BigRentz在租赁服务采购环节每周节省超3000小时(相当于80多个岗位的工作量),错误率降低了40%。如今,该公司正面向客户推出同名系统SiteStack,希望借此将自身实现的效率提升和成本节约进一步传递给客户。此次推出再次改变了公司的定位——从一家为承包商和供应商牵线搭桥的公司,转变为一家向建筑公司出售软件的公司,让客户能够凭借前所未有的信息和控制权自行完成相关工作。

新平台采用相同的底层人工智能技术,但允许客户输入其已建立合作关系的供应商信息。当客户搜索租赁服务并获得排序结果时,可查看所有供应商在该特定租赁服务中的对比情况,以及当前系统中尚未涵盖的其他供应商信息。

坎农称,其理念是简化行业定价模式并提高透明度。他表示,当前行业定价体系呈现出碎片化特征,且存在“刻意营造的不透明性”,一些供应商按日计费,另一些按周计费,再加上其他种种因素,导致难以进行直接比较。

“我们试图解决的问题在不断演变,”坎农说,“所以,不仅仅是获取设备的问题——虽说这确实是个问题,但算不上大问题——此处无意双关。真正的大问题是选择特定供应商的决策过程。起初,我们并没有打算围绕人工智能打造公司。只是事实证明,人工智能是达成这一目标的最佳工具。”

欲了解更多关于人工智能在新兴行业的广泛应用情况,请查阅《财富》杂志最新发布的AIQ特别报告,该报告收录了各行业企业如何利用人工智能的案例,以及该技术如何重塑其所在领域的详尽报道。 (*)

译者:中慧言-王芳

Throughout the recent years of rapid technological innovation, one of the world’s largest industries has lagged behind: construction.

Despite moving $10 trillion every year, the sector has averaged just 1% productivity growth over the past two decades compared to 3.6% for manufacturing and 2.8% for the total world economy, according to a McKinsey report. Construction also ranked last for perceived innovation in a survey of 600 U.S. workers, who deemed the field to be “the least technologically competent” out of 10 industries. This lag comes with serious costs: Research from the Saïd Business School at Oxford University found that over 90% of the world’s infrastructure projects are late or over budget. And in the U.S. alone, $177 billion is wasted annually due to inefficiencies, according to a survey of 600 construction leaders.

To tackle a small piece of this, BigRentz—a California-based company that since 2012 has matched contractors with rental yards for heavy equipment like forklifts, backhoes, and excavators across the U.S.—reinvented its business from one still operating via phone calls to one running completely on AI that it built internally from the ground up. The models are old-school machine learning, showing there’s still value in earlier AI techniques other than large language models. Now the company is launching a stand-alone software platform for large contractors, which is powered by the same AI system but allows customers to run smarter procurement on their existing lists of suppliers.

“I mentioned spreadsheets, but it’s also been on email chains, text messages, telephone calls, and scribbles on paper,” said BigRentz CEO Scott Cannon, referring to how contractors have historically handled their vendor relationships. “It’s a very inefficient industry—based on productivity gains on an annual basis—and with thin margins. So giving contractors the ability to make better decisions gives them a competitive advantage.”

It all starts with a data strategy

The plan from day one had always been to leverage the massive amount of data the company would be working with, but when BigRentz launched it wasn’t clear how to go about it, Cannon said. The company tracked every customer interaction and associated data point as it conducted its day-to-day business. When a contractor submitted a request for a rental, for example, a BigRentz sales employee would take down the type of equipment, jobsite location, dates the rental would be needed for, and any special requirements like delivery constraints or required accessories. The employee would then call local vendors to see if they could fulfill the order and connect the contractor to one that could. BigRentz stored all that data for future use—creating a rich trove of information ranging from a supplier’s decision about whether it could fulfill the order, to price increases, service charges, and customer feedback.

In 2018 the company decided to start digging into the data. The team created a grid of the entire U.S. down to the square kilometer to represent where specific suppliers will deliver, delivery time, and costs accounting for bridges, tolls, and other contingencies in order to determine what price to charge in different locations. This was all done manually, often on whiteboards, and the tediousness spurred the decision to find a better way.

“The challenges of trying to mine that information and wield it forced us into the decision to use AI,” says Cannon.

A new system…and new company

Over the years, BigRentz started building up its technology team—including hiring data scientists, a full-stack engineering team, and a QA team—and creating machine learning models around different datasets. In 2022 it brought those models together to create its new AI system, SiteStack, relying solely on technology it built in-house. The company officially rolled out the system internally in January to autonomously handle vendor selection. Now, when a customer submits a rental request, rather than a team member calling a dozen or so vendors to fulfill the order, the system analyzes millions of historic pricing and fulfillment records, ranks suppliers in real time based on cost, proximity, and reliability, and selects the optimal vendor automatically.

Cannon said the system got much better as they obtained more information to train it on; the AI system was ultimately built on $500 million in sales data and more than $1 billion in interactions (the latter being sales the company didn’t win but which nonetheless provided valuable data). The data includes more than 13 million supplier decisions about order requests, a dozen pricing datasets, customer feedback, and millions of other data points that can predict what an all-in cost will be or what a supplier will do, according to Cannon.

Having a machine learning system determine the best vendor match for a contractor’s specific need is a huge shift from the company’s previous process in which salespeople spent all day on the phone calling rental yards. The company that’s come out on the other side of this AI project looks completely different than the one that launched years ago.

“The company had some tension between two different cultures for a bit. The tech culture [on the teams building the platform] was different than the sales and marketing on the marketplace side. That was always a bit of a challenge. But we reduced the headcount by so much [gradually over time] due to automation that we’re basically just a tech company at this point,” Cannon said, adding that working in an industry that’s averse to change has been the biggest hurdle.

AI as the best tool for the job

Since it began using the new system in January, Cannon said BigRentz has saved over 3,000 hours every week in terms of time spent on procurement for rental services (the equivalent of over 80 roles) and has reduced errors by 40%. Today, the company is launching a customer-facing version of the system, also called SiteStack, which it hopes will make it possible to further pass on the types of efficiencies and cost savings it has realized to its customers. The launch is transforming the company yet again—from one that connects contractors and vendors to one that sells construction firms software so they can do it themselves with more information and control than ever before.

The new platform uses the same underlying AI but offers customers the ability to input information on the suppliers they already have relationships with. When they search for a rental and get the stack-ranked results, they can see how all their vendors compare for that specific rental, as well as additional vendors not in their current system.

Cannon said the idea is to streamline and bring more transparency to pricing in the industry, which he said is fragmented and “intentionally opaque” with some vendors offering day rates, others offering week rates, and other factors that make it difficult to compare apples to apples.

“What we’re trying to solve for evolved,” Cannon said. “So not just access to equipment, which is a problem, just not a big problem—no pun intended. It’s the decision-making that leads into which vendor you use, which is really the bigger problem. We didn’t set out to build our company around AI. It just turned out to be the best tool for the job.”

Read more about AI’s Long Reach Across New Industries, in the latest Fortune AIQ special report, a collection of stories detailing how businesses across virtually every industry are putting AI to work—and how their particular field is changing as a result of the technology.

*