
人工智能的崛起引发了能源悖论。尽管ChatGPT等人工智能工具背后的科技领军人物称,大型语言模型能解决世界面临的重大问题,然而为该技术提供动力的基础设施却可能因对环境造成的影响而引发另一个问题。能源效率监测公司Verdigris首席执行官马克·钟(Mark Chung)指出,人工智能数据中心的能耗可能是传统基于中央处理器数据中心的20至30倍。部分专家预测,未来五年内,人工智能将占美国电力消耗的10%以上,这加剧了人们的担忧:若对人工智能计算需求不加约束,或将以指数级速度加速气候破坏进程。
然而,人工智能与能源的融合也迫使人们重新审视行业传统实践,这为减轻环境影响创造了契机——通过使电网及其供电的数据中心以比以往更为清洁、高效的方式运行。
“为数据中心供电面临的最大挑战之一在于优化能源流动,而人工智能在攻克这一难题上能够发挥巨大作用。”Climate Capital合伙人凯蒂·达勒姆(Katie Durham)表示。
Kraken Technologies是利用人工智能攻克能效难题的行业巨头之一。其人工智能驱动的操作系统为全球40家公用事业公司旗下超7000万客户账户提供服务。据向《财富》杂志提供的数据显示,该系统连接了超50万台消费设备(从电动汽车充电器到家用电池),控制着超5吉瓦的灵活能源供应,仅在2024年,就抵消了1400万吨二氧化碳排放。
Kraken首席营销与灵活性官德维姆·塞拉尔(Devrim Celal)表示,公司成功的关键在于挖掘可再生能源需求中蕴含的效率潜力。他解释道:“在向可再生能源转型的过程中,会涌现出一系列全新的问题。”公司的任务是分析可再生能源需求,构建基于用户特定消耗模式的能源存储与调配系统。
他还提到,公司利用机器学习技术,根据用户的能源消耗模式对其进行分组,进而以高达90%的准确率高效分配可再生能源电力。这意味着,如果客户通常在每天晚上9点至次日早上7点将电动汽车充至满电,系统会在此时段调配能源,并在车辆不在家时预留电力。他说道:“这对于维持电网平衡而言,具有极高的价值。”
总部位于迈阿密的Exowatt正在开发太阳能发电系统,旨在为人工智能数据中心提供全天候电力供应。该公司首席执行官兼联合创始人汉南·哈皮(Hannan Happi)表示,通过提供太阳能存储与全天候调度方案,该公司助力公用事业公司应对太阳能固有的供应间歇性问题,摆脱对碳排放能源的依赖。“我们正争分夺秒地将产品推向市场并尽快扩大规模,”他强调,“因为倘若不这么做,数据中心客户所能采用的唯一能源和电力解决方案,便是将柴油和天然气接入电网,这将给数据中心周边社区带来极为严重的影响。”
Exowatt内部也高度依赖人工智能技术。该公司利用大型语言模型驱动“数字孪生”系统,该系统能够实时模拟性能并实现预防性维护。该公司正用定制化人工智能软件取代传统SaaS工具,以满足其供应链和制造需求。
初创公司Halcyon获得了1080万美元种子轮融资,正以不同的方式利用人工智能为能源领域从业者提供支持。该公司开发的大型语言模型能处理联邦能源管理委员会(Federal Energy Regulatory Commission)、能源部(Department of Energy)等机构的监管文件,将其转化为可搜索的结构化信息——这不仅为能源开发商节省了时间,还拓宽了其获取电池激励政策、电网限制及输电计划等最新数据的渠道。
“我们主要利用大型语言模型来阅读文件。”Halcyon的数据科学主管山姆·斯泰尔(Sam Steyer)表示,“想想能源公司的监管分析师,过去他们可能需要查找包含相关信息的长达1000页的PDF文件,用‘查找’功能搜索,可能耗费一整天时间才能找到所需数据……我们正全力让这一过程变得更为高效、快捷,让他们能在更大范围内开展同样的工作。”
Halcyon的使命之一,便是确保人工智能日益增长的电力需求能够助推清洁能源转型。该公司正在构建数据中心专项电价追踪器,以及助力可再生能源开发商快速选址的工具。
施泰尔表示:“人工智能与能源实则相辅相成。人工智能正显著推动电力需求持续攀升……它将在扩大电力系统规模的过程中起到至关重要的作用。”
译者:中慧言-王芳(*)
人工智能的崛起引发了能源悖论。尽管ChatGPT等人工智能工具背后的科技领军人物称,大型语言模型能解决世界面临的重大问题,然而为该技术提供动力的基础设施却可能因对环境造成的影响而引发另一个问题。能源效率监测公司Verdigris首席执行官马克·钟(Mark Chung)指出,人工智能数据中心的能耗可能是传统基于中央处理器数据中心的20至30倍。部分专家预测,未来五年内,人工智能将占美国电力消耗的10%以上,这加剧了人们的担忧:若对人工智能计算需求不加约束,或将以指数级速度加速气候破坏进程。
然而,人工智能与能源的融合也迫使人们重新审视行业传统实践,这为减轻环境影响创造了契机——通过使电网及其供电的数据中心以比以往更为清洁、高效的方式运行。
“为数据中心供电面临的最大挑战之一在于优化能源流动,而人工智能在攻克这一难题上能够发挥巨大作用。”Climate Capital合伙人凯蒂·达勒姆(Katie Durham)表示。
Kraken Technologies是利用人工智能攻克能效难题的行业巨头之一。其人工智能驱动的操作系统为全球40家公用事业公司旗下超7000万客户账户提供服务。据向《财富》杂志提供的数据显示,该系统连接了超50万台消费设备(从电动汽车充电器到家用电池),控制着超5吉瓦的灵活能源供应,仅在2024年,就抵消了1400万吨二氧化碳排放。
Kraken首席营销与灵活性官德维姆·塞拉尔(Devrim Celal)表示,公司成功的关键在于挖掘可再生能源需求中蕴含的效率潜力。他解释道:“在向可再生能源转型的过程中,会涌现出一系列全新的问题。”公司的任务是分析可再生能源需求,构建基于用户特定消耗模式的能源存储与调配系统。
他还提到,公司利用机器学习技术,根据用户的能源消耗模式对其进行分组,进而以高达90%的准确率高效分配可再生能源电力。这意味着,如果客户通常在每天晚上9点至次日早上7点将电动汽车充至满电,系统会在此时段调配能源,并在车辆不在家时预留电力。他说道:“这对于维持电网平衡而言,具有极高的价值。”
总部位于迈阿密的Exowatt正在开发太阳能发电系统,旨在为人工智能数据中心提供全天候电力供应。该公司首席执行官兼联合创始人汉南·哈皮(Hannan Happi)表示,通过提供太阳能存储与全天候调度方案,该公司助力公用事业公司应对太阳能固有的供应间歇性问题,摆脱对碳排放能源的依赖。“我们正争分夺秒地将产品推向市场并尽快扩大规模,”他强调,“因为倘若不这么做,数据中心客户所能采用的唯一能源和电力解决方案,便是将柴油和天然气接入电网,这将给数据中心周边社区带来极为严重的影响。”
Exowatt内部也高度依赖人工智能技术。该公司利用大型语言模型驱动“数字孪生”系统,该系统能够实时模拟性能并实现预防性维护。该公司正用定制化人工智能软件取代传统SaaS工具,以满足其供应链和制造需求。
初创公司Halcyon获得了1080万美元种子轮融资,正以不同的方式利用人工智能为能源领域从业者提供支持。该公司开发的大型语言模型能处理联邦能源管理委员会(Federal Energy Regulatory Commission)、能源部(Department of Energy)等机构的监管文件,将其转化为可搜索的结构化信息——这不仅为能源开发商节省了时间,还拓宽了其获取电池激励政策、电网限制及输电计划等最新数据的渠道。
“我们主要利用大型语言模型来阅读文件。”Halcyon的数据科学主管山姆·斯泰尔(Sam Steyer)表示,“想想能源公司的监管分析师,过去他们可能需要查找包含相关信息的长达1000页的PDF文件,用‘查找’功能搜索,可能耗费一整天时间才能找到所需数据……我们正全力让这一过程变得更为高效、快捷,让他们能在更大范围内开展同样的工作。”
Halcyon的使命之一,便是确保人工智能日益增长的电力需求能够助推清洁能源转型。该公司正在构建数据中心专项电价追踪器,以及助力可再生能源开发商快速选址的工具。
施泰尔表示:“人工智能与能源实则相辅相成。人工智能正显著推动电力需求持续攀升……它将在扩大电力系统规模的过程中起到至关重要的作用。”
译者:中慧言-王芳(*)
The rise of artificial intelligence has created an energy paradox. While tech leaders behind AI tools like ChatGPT say large language models can solve some of the world’s biggest problems, the infrastructure powering the technology may be creating another problem as a result of the environmental impact. AI data centers can consume 20 to 30 times as much energy as their CPU-based predecessors, according to Mark Chung, CEO of energy efficiency monitoring company Verdigris. Some experts predict AI will account for more than 10% of U.S. electricity consumption within five years, fueling fears that unchecked AI compute demand could exponentially accelerate climate damage.
But the convergence of AI and energy is also forcing a rethink of the industry’s traditional practices, creating opportunities to mitigate the environmental impact by making the grid, and the data centers it feeds, operate more cleanly and more efficiently than was possible before.
“One of the biggest challenges with providing energy to a data center is optimizing the flow of that energy, and that is a problem that AI can be extremely helpful in solving,” says Katie Durham, a partner at Climate Capital.
One of the largest players using AI to tackle this efficiency problem is Kraken Technologies. Its AI-powered operating system serves over 70 million customer accounts across 40 utilities worldwide. It connects more than 500,000 consumer devices—from EV chargers to home batteries—and controls over five gigawatts of flexible energy supply, offsetting 14 million tons of CO₂ in 2024 alone, according to figures shared with Fortune.
Devrim Celal, Kraken’s chief marketing and flexibility officer, said the company’s success hinges on finding efficiencies in renewable energy demand. “When you transition to renewable energy, you get a completely new set of problems,” he says, explaining the company’s role in analyzing the demand for renewables to create a system that stores or deploys energy based on user-specific consumption patterns.
He also notes that the company uses machine learning to cluster consumers based on their energy consumption patterns and efficiently distribute renewable power with 90% accuracy. This means that if a customer typically charges their electric vehicle to 100% from 9 p.m. to 7 a.m. every day, the energy will be deployed at this time and reserved when the vehicle is away from home. “That’s incredibly powerful when balancing the grid,” he says.
Miami-based Exowatt is building solar energy systems designed to power AI data centers around the clock. By providing a means to store and dispatch solar power at any time of day, the company helps utilities deal with the inherent intermittency of solar without resorting to carbon-emitting energy sources, says Exowatt CEO and cofounder Hannan Happi. “We’re really in a mad rush to bring the product to market and scale it as fast as possible,” he notes. “Because if we don’t, the only energy and power solution data center customers have available to them is just putting diesel and natural gas on the grid, which is really, really affecting the communities around where these data centers are being built.”
Exowatt is also leaning heavily on AI internally. It uses LLMs to power a “digital twin” system that simulates performance in real time and enables proactive maintenance. The company is replacing traditional SaaS tools with custom-built AI software, tailored to its supply-chain and manufacturing needs.
Halcyon, a startup with $10.8 million in seed funding, is using AI to help energy professionals in a different way. The firm has created large language models that ingest regulatory filings from agencies like the Federal Energy Regulatory Commission and the Department of Energy and makes them searchable and structured—saving energy developers time and expanding access to up-to-date data on battery incentives, grid constraints, and transmission plans.
“We’re using LLMs primarily to read,” says Sam Steyer, head of data science at Halcyon. “We think of the regulatory analyst at an energy company who, in the past, would have to search for the right 1,000 page PDF and then use Control F and maybe spend a day finding the right piece of data … We’re trying to make that process as efficient and fast as possible and empower that person to do the same work at a much bigger scale.”
A part of Halcyon’s mission is to ensure that AI’s expanding appetite for electricity also accelerates the clean energy transition. The company is building trackers for special data center electricity rates and tools that help renewable developers site projects faster.
“AI and energy are really symbiotic,” says Steyer. “AI is driving growth in electricity demand in a big way … It’s going to be completely essential to scaling the electricity system.”