
根据LinkedIn最近的一项调查,超过半数的职场人士表示,AI培训让他们感觉仿佛承担了第二份工作。这凸显了在职场自动化项目日益扩张的背景下,员工普遍存在的不满情绪。
多数受访者(51%)认为,AI培训要求的强度和频率过高,已干扰到他们的核心工作职责,并导致职业倦怠。员工们指出,课程内容过于繁杂、截止日期不切实际,以及培训实际效用不够清晰,是引发不满的主要根源。
LinkedIn的数据显示,今年在该平台上谈及“感到压力过大”和“应对变革”的用户数量增长了82%。该公司在报告中写道:“持续加码的AI技能提升压力正在加剧职场人士的不安全感,其中三分之一(33%)承认自己因对AI的理解甚少而感到尴尬,35%表示在工作中谈论AI时会感到紧张,担心暴露自己的认知不足。”
职场影响
在雇主加大投入,推动员工提升技能以适应基于人工智能的新型工作流程之际,这些发现浮出水面。许多职场人士表示,这些培训并未让他们感到更有能力,反而增加了压力并延长了工作时间,而且往往既没有额外补偿,也未带来实际的工作改进。
这种情况带来了切实的后果,也从侧面印证了员工的不安全感并非空穴来风。IgniteTech 首席执行官埃里克·沃恩上月早些时候对《财富》表示,他在员工未能积极响应AI培训后裁减了近80%的人员。而Mindstone的约书亚·沃勒则讲述了一个类似案例:某客户公司的首席执行官要求员工将每周五全部用于AI再培训,如果不能就学习成果作出有建设性的反馈,就被迫离开公司。
调查还发现,在充斥着各类AI相关内容和项目的背景下,职场人士越来越倾向于依赖自己的人脉网络,而非AI工具或搜索引擎,来获得值得信赖的建议和支持,以应对职场变化。约有43%的职场人士表示,“他们的人脉(即认识的人)仍然是职场建议的首要来源”,这一比例高于搜索引擎和AI工具。近三分之二(64%)的职场人士认为,同事的帮助让他们更加快速和自信地做出决策。
对强制性AI培训的日益不满或许只是冰山一角。麻省理工学院(MIT)近期的一项研究发现,95%的企业生成式AI试点项目未能带来任何可量化的投资回报。在企业开支与投资者热情远超实际成果的情况下,这进一步加剧了人们对AI股市泡沫的忧虑。这种现象似乎与低效、举步维艰的AI培训所引发的挫败感密切相关。
麻省理工学院发人深省的研究结论
麻省理工学院的NANDA报告分析了数百个AI部署案例,结果发现,仅有5%实现了营收的快速增长或显著的运营改善。大多数试点项目停滞在测试阶段,或最终被弃用;而大型企业往往需要近一年时间来推动规模化,但成功率极低。报告指出,阻碍的关键不仅在于模型质量,还在于企业整合存在缺陷,以及员工在AI素养方面存在差距。
华尔街及机构投资者已开始敲响警钟,担心创纪录的AI投资未能转化为利润,可能会引发高估科技股的一场痛苦调整。由于担心现实与炒作之间的差距难以为继,部分投资者已开始削减相关持仓,这一幕令人想起过去的科技泡沫。英伟达(Nvidia)的最新财报便折射出市场的紧张情绪:即便营收再创新高,股价仍因投资者抛售下跌了几个百分点。
与职场困境的关联
在企业大举投入AI试点项目和科技股之际,员工们对其商业价值及不断提升技能的要求愈发持怀疑态度。超过半数的职场人士表示AI培训犹如承担了第二份工作,而麻省理工学院的报告则为这一现象提供了新的注解:企业激进推动数字化转型的做法,并未如宣传所言增强员工能力,反而正在消耗他们的精力。
调查结果凸显了技术推广速度与职场人士实际体验之间日益加剧的紧张关系,表明企业或许需要重新审视其AI技能培训的方式,以避免进一步造成员工与公司的疏离。(*)
为撰写本报道,《财富》杂志使用生成式人工智能协助完成初稿。在发布前,编辑已核实信息准确性。
译者:刘进龙
审校:汪皓
根据LinkedIn最近的一项调查,超过半数的职场人士表示,AI培训让他们感觉仿佛承担了第二份工作。这凸显了在职场自动化项目日益扩张的背景下,员工普遍存在的不满情绪。
多数受访者(51%)认为,AI培训要求的强度和频率过高,已干扰到他们的核心工作职责,并导致职业倦怠。员工们指出,课程内容过于繁杂、截止日期不切实际,以及培训实际效用不够清晰,是引发不满的主要根源。
LinkedIn的数据显示,今年在该平台上谈及“感到压力过大”和“应对变革”的用户数量增长了82%。该公司在报告中写道:“持续加码的AI技能提升压力正在加剧职场人士的不安全感,其中三分之一(33%)承认自己因对AI的理解甚少而感到尴尬,35%表示在工作中谈论AI时会感到紧张,担心暴露自己的认知不足。”
职场影响
在雇主加大投入,推动员工提升技能以适应基于人工智能的新型工作流程之际,这些发现浮出水面。许多职场人士表示,这些培训并未让他们感到更有能力,反而增加了压力并延长了工作时间,而且往往既没有额外补偿,也未带来实际的工作改进。
这种情况带来了切实的后果,也从侧面印证了员工的不安全感并非空穴来风。IgniteTech 首席执行官埃里克·沃恩上月早些时候对《财富》表示,他在员工未能积极响应AI培训后裁减了近80%的人员。而Mindstone的约书亚·沃勒则讲述了一个类似案例:某客户公司的首席执行官要求员工将每周五全部用于AI再培训,如果不能就学习成果作出有建设性的反馈,就被迫离开公司。
调查还发现,在充斥着各类AI相关内容和项目的背景下,职场人士越来越倾向于依赖自己的人脉网络,而非AI工具或搜索引擎,来获得值得信赖的建议和支持,以应对职场变化。约有43%的职场人士表示,“他们的人脉(即认识的人)仍然是职场建议的首要来源”,这一比例高于搜索引擎和AI工具。近三分之二(64%)的职场人士认为,同事的帮助让他们更加快速和自信地做出决策。
对强制性AI培训的日益不满或许只是冰山一角。麻省理工学院(MIT)近期的一项研究发现,95%的企业生成式AI试点项目未能带来任何可量化的投资回报。在企业开支与投资者热情远超实际成果的情况下,这进一步加剧了人们对AI股市泡沫的忧虑。这种现象似乎与低效、举步维艰的AI培训所引发的挫败感密切相关。
麻省理工学院发人深省的研究结论
麻省理工学院的NANDA报告分析了数百个AI部署案例,结果发现,仅有5%实现了营收的快速增长或显著的运营改善。大多数试点项目停滞在测试阶段,或最终被弃用;而大型企业往往需要近一年时间来推动规模化,但成功率极低。报告指出,阻碍的关键不仅在于模型质量,还在于企业整合存在缺陷,以及员工在AI素养方面存在差距。
华尔街及机构投资者已开始敲响警钟,担心创纪录的AI投资未能转化为利润,可能会引发高估科技股的一场痛苦调整。由于担心现实与炒作之间的差距难以为继,部分投资者已开始削减相关持仓,这一幕令人想起过去的科技泡沫。英伟达(Nvidia)的最新财报便折射出市场的紧张情绪:即便营收再创新高,股价仍因投资者抛售下跌了几个百分点。
与职场困境的关联
在企业大举投入AI试点项目和科技股之际,员工们对其商业价值及不断提升技能的要求愈发持怀疑态度。超过半数的职场人士表示AI培训犹如承担了第二份工作,而麻省理工学院的报告则为这一现象提供了新的注解:企业激进推动数字化转型的做法,并未如宣传所言增强员工能力,反而正在消耗他们的精力。
调查结果凸显了技术推广速度与职场人士实际体验之间日益加剧的紧张关系,表明企业或许需要重新审视其AI技能培训的方式,以避免进一步造成员工与公司的疏离。(*)
为撰写本报道,《财富》杂志使用生成式人工智能协助完成初稿。在发布前,编辑已核实信息准确性。
译者:刘进龙
审校:汪皓
Over half of professionals report that AI trainings feel like a second job, according to a recent LinkedIn survey, highlighting widespread frustration among workers with the proliferation of workplace automation programs.
A majority of respondents (51%) find the intensity and frequency of AI training requirements excessive, stating that it’s interfering with their core job responsibilities and contributing to burnout. Employees cited dense training modules, unrealistic deadlines, and a lack of clarity about practical benefits as key sources of dissatisfaction.
LinkedIn found an 82% increase in people posting on the platform about feeling overwhelmed and navigating change this year. “The mounting pressure to upskill in AI is fueling insecurity among professionals at work—with a third (33%) admitting they feel embarrassed by how little they understand it, and 35% saying they feel nervous talking about AI at work for fear of sounding uninformed,” LinkedIn wrote.
Workplace impact
These findings come as employers increase investment in upskilling efforts designed to help staff adapt to new AI-based processes. Instead of feeling empowered, many professionals say these trainings add stress and extend their working hours, often without extra compensation or real improvements to workflow.
There are real consequences for this and anecdotal evidence that workers are justified in feeling insecure. IgniteTech CEO Eric Vaughan told Fortune earlier this month that he laid off nearly 80% of his staff after they failed to respond to AI training, while Joshua Wöhle of Mindstone relayed a similar story of a client-CEO who ordered his staff to dedicate all Fridays to AI retraining, and invited them to leave the company if they didn’t report back constructively on their findings.
The survey also found that, amid the flood of AI-related content and programs, professionals are increasingly turning to their networks—rather than AI tools or search engines—for trusted advice and support in navigating workplace changes. Some 43% of professionals say “their network, the people they know, is still their No. 1 source for advice at work,” ahead of search engines and AI tools. Nearly two-thirds (64%) of professionals say colleagues are helping them make decisions faster and more confidently.
Mounting frustration with mandatory AI trainings may be just the tip of the iceberg. A recent MIT study found that 95% of generative AI pilots at enterprises have failed to deliver any measurable return on investment—fueling growing concerns over an AI stock bubble as corporate spending and investor hype far outweigh results. It seems to be tied to this frustration over ineffective or stumbling AI training efforts.
MIT’s sobering findings
The MIT NANDA report analyzed hundreds of AI deployments and found only 5% produced rapid revenue acceleration or noticeable operational improvements. The majority of pilots stall in the testing phase or get abandoned, with large companies taking nearly a year to scale projects that rarely succeed. Flawed enterprise integration and a gap in AI literacy—not just model quality—were cited as the main barriers.
Wall Street and institutional investors are sounding the alarm, worried that record AI investments aren’t translating to profits and could trigger a painful reckoning for overvalued tech stocks. Some have started trimming exposure, fearing that the gap between reality and hype may be unsustainable, reminiscent of prior tech bubbles. The all-important Nvidia earnings on Wednesday illustrate the jitters, as record revenue still failed to prevent investors taking a few percentage points off the stock.
Connections to workforce concerns
As companies pour money into AI pilots and tech stocks, employees are increasingly skeptical of both the business value and the constant upskilling requirements. With over half of professionals saying AI trainings feel like a second job, the MIT report adds new context: Companies’ aggressive push for digital transformation is straining workers, not yet augmenting them, as widely billed.
The results underscore mounting tension between the pace of technological implementation and the lived experience of professionals, suggesting that companies may need to rethink their approach to AI upskilling to avoid further alienating employees.