首页 / 财富中文网 / 正文

分析师:我们正在进入AI的“第二阶段”

财富中文网 2025-11-26 04:31:20

分析师:我们正在进入AI的“第二阶段”
谷歌母公司Alphabet首席执行官桑达尔·皮查伊。图片来源:David Paul Morris—Bloomberg via Getty Images

谷歌人工智能基础设施负责人警告称,公司需要扩展其技术规模,以应对AI产品所处理的海量用户涌入和复杂请求——这可能意味着市场对泡沫的担忧被过分夸大了。

据CNBC报道,谷歌全球人工智能和基础设施团队副总裁阿明·瓦达特(Amin Vahdat)在11月6日的一次全员会议上表示,公司需要每六个月将其服务能力翻一番,并“在4到5年内实现下一个千倍增长”。

这指的是谷歌确保Gemini及其他依赖于谷歌云(Google Cloud)的AI产品在用户查询量激增时仍能良好运行的能力。这与算力(compute)或训练人工智能所涉及的物理基础设施不同。

一位谷歌发言人告诉《财富》:“对AI服务的需求意味着我们需要提供显著更多的计算能力,除了新的投资,我们正通过提高硬件、软件和模型优化的整体效率来推动这一点。”他并以公司的Ironwood芯片为例,说明其自研硬件如何推动计算能力的提升。

过去几年,每一家超大规模云服务商——包括谷歌云,以及亚马逊 AWS和微软 Azure——都争先恐后地增加算力,以预期AI用户的涌入。

Futurum Equities首席市场策略师谢伊·博洛尔(Shay Boloor)表示,如今用户已经到来。但随着每家公司都在加码其AI产品,服务能力正成为下一个需要应对的重大挑战。

他告诉《财富》:“我们正在进入AI的第二阶段,在此阶段,服务能力甚至比计算能力更重要,因为算力创造模型,而服务能力决定了该模型实际触达用户的广度和速度。”

博洛尔表示,凭借其巨额资本支出和过去自研AI芯片的战略举措,谷歌很可能有能力每六个月将其服务能力翻一番。

然而他补充道,谷歌及其竞争对手仍面临一场艰苦的战斗,尤其是在AI产品开始处理更复杂的请求(包括高级搜索查询和视频)时。

他说:“瓶颈不在于雄心,而真正在于物理上的限制,比如电力、冷却、网络带宽以及建设这些高能耗数据中心容量所需的时间。”

博洛尔表示,然而,谷歌对其AI基础设施的需求似乎如此之大,以至于它要如此快速地推动服务能力翻倍,这一事实可能表明AI悲观主义者做出的悲观预测并不完全准确。

此类担忧导致所有三大主要股票指数在过去一周下跌了1.9%或更多——包括科技股权重较高的纳斯达克指数。

他说:“这不像投机性的热情,这仅仅是积压的未满足需求。如果进展比许多人希望的要慢一点,那是因为它们在算力和更多服务能力方面都受到了限制。”(*)

译者:刘进龙

审校:汪皓

谷歌人工智能基础设施负责人警告称,公司需要扩展其技术规模,以应对AI产品所处理的海量用户涌入和复杂请求——这可能意味着市场对泡沫的担忧被过分夸大了。

据CNBC报道,谷歌全球人工智能和基础设施团队副总裁阿明·瓦达特(Amin Vahdat)在11月6日的一次全员会议上表示,公司需要每六个月将其服务能力翻一番,并“在4到5年内实现下一个千倍增长”。

这指的是谷歌确保Gemini及其他依赖于谷歌云(Google Cloud)的AI产品在用户查询量激增时仍能良好运行的能力。这与算力(compute)或训练人工智能所涉及的物理基础设施不同。

一位谷歌发言人告诉《财富》:“对AI服务的需求意味着我们需要提供显著更多的计算能力,除了新的投资,我们正通过提高硬件、软件和模型优化的整体效率来推动这一点。”他并以公司的Ironwood芯片为例,说明其自研硬件如何推动计算能力的提升。

过去几年,每一家超大规模云服务商——包括谷歌云,以及亚马逊 AWS和微软 Azure——都争先恐后地增加算力,以预期AI用户的涌入。

Futurum Equities首席市场策略师谢伊·博洛尔(Shay Boloor)表示,如今用户已经到来。但随着每家公司都在加码其AI产品,服务能力正成为下一个需要应对的重大挑战。

他告诉《财富》:“我们正在进入AI的第二阶段,在此阶段,服务能力甚至比计算能力更重要,因为算力创造模型,而服务能力决定了该模型实际触达用户的广度和速度。”

博洛尔表示,凭借其巨额资本支出和过去自研AI芯片的战略举措,谷歌很可能有能力每六个月将其服务能力翻一番。

然而他补充道,谷歌及其竞争对手仍面临一场艰苦的战斗,尤其是在AI产品开始处理更复杂的请求(包括高级搜索查询和视频)时。

他说:“瓶颈不在于雄心,而真正在于物理上的限制,比如电力、冷却、网络带宽以及建设这些高能耗数据中心容量所需的时间。”

博洛尔表示,然而,谷歌对其AI基础设施的需求似乎如此之大,以至于它要如此快速地推动服务能力翻倍,这一事实可能表明AI悲观主义者做出的悲观预测并不完全准确。

此类担忧导致所有三大主要股票指数在过去一周下跌了1.9%或更多——包括科技股权重较高的纳斯达克指数。

他说:“这不像投机性的热情,这仅仅是积压的未满足需求。如果进展比许多人希望的要慢一点,那是因为它们在算力和更多服务能力方面都受到了限制。”(*)

译者:刘进龙

审校:汪皓

Google's AI infrastructure boss warned the company needs to scale up its tech to accommodate a massive influx of users and complex requests being handled by AI products---and it may be a sign that fears of a bubble are overblown.

Amin Vahdat, a VP who leads the global AI and infrastructure team at Google, said during a presentation at a Nov. 6 all-hands meeting that the company needs to double its serving capacity every six months, with “the next 1000x in 4-5 years,” CNBC reported.

This refers to Google's ability to ensure that Gemini and other AI products depending on Google Cloud can still work well when queried by a skyrocketing number of users. That's different from compute, or the physical infrastructure involved in training AI.

A Google spokesperson told Fortune that “demand for AI services means we are being asked to provide significantly more computing capacity, which we are driving through efficiency across hardware, software, and model optimizations, in addition to new investments,” pointing to the company's Ironwood chips as an example of its own hardware driving improvements in computing capacity.

In previous years, every hyperscaler---think Google Cloud but also Amazon and Microsoft Azure---rushed to increase compute in anticipation of an influx of AI users.

Now, the users are here, said Shay Boloor, chief market strategist at Futurum Equities. But as each company ratchets up its AI offerings, serving capacity is emerging as the next major challenge to tackle.

“We're entering the stage two of AI where serving capacity matters even more than the compute capacity, because the compute creates the model, but serving capacity determines how widely and how quickly that model can actually reach the users,” he told Fortune.

Google, with its vast capital expenditures and past strategic moves to develop its own AI chips, is likely capable of doubling its serving capacity every six months, said Boloor.

Yet Google and its competitors are still facing an uphill battle, he added, especially as AI products start to deal with more complex requests, including advanced search queries and video.

“The bottleneck is not ambition, it's just truly the physical constraints, like the power, the cooling, the networking bandwidth and the time needed to build these energized data center capacities,” he said.

However, the fact that Google is seemingly facing so much demand for its AI infrastructure that it is pushing to double its serving capacity so quickly might be a sign that gloomy predictions made by AI pessimists aren't entirely accurate, said Boloor.

Such concerns sent all three major stock indexes down by 1.9% or more this past week---including the tech-heavy Nasdaq.

“This is not like speculative enthusiasm, it's just unmet demand sitting in backlog,” he said. “If things are slowing down a bit more than a lot of people hope for, it's because they're all constrained on the compute and more serving capacity.”

*