
专家指出,甲骨文从市场宠儿迅速沦为市场警示信号,这一转变揭示了人工智能热潮背后更深层的问题:无论过去两年投资者多么狂热,这个行业都无法摆脱物理定律的制约,也绕不开债务融资的现实。
一份糟糕的财报显示,甲骨文季度资本支出达120亿美元,高于分析师预期的82.5亿美元。此后,其股价较9月高点暴跌45%,本周内又下跌了14%。
业绩指引也表现疲软,并且该公司将2026财年的资本支出预测再度上调了150亿美元。其中大部分将投入到专用于OpenAI的数据中心。OpenAI是甲骨文在AI领域价值3000亿美元的合作伙伴。
甲骨文联合首席执行官克莱·马古伊克(Clay Magouyrk)在本周的财报电话会议上表示:“我们在全球交付能力方面设定了雄心勃勃且可实现的目标。”
投资者担忧甲骨文将如何支付这些巨额开支,因为其核心收入来源——云收入和云基础设施销售——也未达到华尔街的预期。分析师将其AI建设描述为债务驱动型,尽管该公司在文件中并未明确将特定债务与具体资本项目挂钩。
到了上周五,连甲骨文AI战略的“皇冠明珠”——其OpenAI数据中心——也出现了裂痕。彭博社披露,由于“劳动力和材料短缺”,甲骨文已将部分美国OpenAI数据中心的完工时间从2027年推迟到2028年。
“他们遇到劳动力和材料短缺是完全有可能的,”数据中心研究员乔纳森·库米(Jonathan Koomey)表示,他曾为IBM和AMD等公用事业公司和超大规模供应商提供咨询。在他看来,AI热潮正直接撞上数字速度与物理速度之间的差异。“比特世界瞬息万变。原子世界则不然。而数据中心正是这两个世界碰撞的地方。”
尽管彭博社未明确指出哪些具体设施被延迟,但库米表示,一个可能的候选项目是“木星计划”(Project Jupiter)。这是甲骨文计划在新墨西哥州偏远地区建设的巨型数据中心园区。当地报道将“木星计划”描述为一个耗资超过1600亿美元的超级园区,是迄今最具雄心的AI基础设施项目之一,也是甲骨文为OpenAI提供算力承诺的核心部分。
库米描述了一个资本可以立即部署,但资本必须购买的设备却无法立即到位的行业。他解释说,涡轮机、变压器、专用冷却系统和高压设备的交付时间已延长至数年。大型变压器的交付可能需要四到五年。企业越来越多地依赖工业燃气轮机来建设微电网,其交付时间可能长达六到七年。
即使公司愿意支付溢价,生产这些部件的工厂也无法在一夜之间神奇地扩张,而受过安装培训的制造业劳动力已经捉襟见肘。AI公司可能希望以模型发布的速度推进,但建筑和公用事业部门运作的时间线根本不同。
库米明确指出,他所描述的物理约束适用于所有超大规模供应商,但甲骨文尤其令投资者担忧,因为它进入AI基础设施竞赛较晚,并且将其大部分资本支出绑定在了一个客户——OpenAI身上。
“每当投资发生巨大转变时,都会发生这种情况,”他说。“制造商最终会赶上,但不会马上。现实会介入。”
一旦财务限制因素显现,这种摩擦就变得更加清晰。尽管甲骨文股价暴跌引人注目,但债券市场的反应可能更重要。随着其信用风险指标飙升至2009年以来的最高水平,甲骨文的债券收益率暴涨,一些曾经是投资级的新发行债券现在像垃圾债券一样交易。这表明,向公司放贷的投资者——历史上对科技周期最清醒的观察者——正开始重新评估向AI建设放贷的风险。
过去几十年,科技公司的惯例是用盈利来支付增长。现在,包括甲骨文在内的许多公司正转向信贷市场,为其庞大的扩张提供资金。根据美国银行(Bank of America)的分析,五大AI超大规模供应商——谷歌(Google)、Meta、亚马逊(Amazon)、微软(Microsoft)和甲骨文——今年合计发行了约1210亿美元的债券,用于资助AI数据中心建设,这一发行水平远高于历史平均水平,标志着基础设施融资向债务融资的重大转变。
然而,在这五家公司中,甲骨文完成了一些规模最大的交易,例如其9月份180亿美元的债券发行。其债务总额约为1000亿美元。其他四家公司现金状况更强,信用评级更高(AA/A级,而甲骨文在BBB区间),并且能够产生大量的正向自由现金流。因此,虽然甲骨文并非唯一为AI支出而利用债务市场的科技巨头,但其债务规模、现金生成能力和信用评级使其成为杠杆率最高的公司之一。
债务投资者未必需要惊人的回报;他们只需要确定能连本带利收回资金。如果信心稍有动摇,收益率就会上升。
“这感觉像是1998年的时刻,”CloudBees首席执行官、互联网泡沫时期的前科技高管阿努吉·卡普尔(Anuj Kapur)告诉Axios。前景巨大,但回报显现的速度也存在巨大的不确定性。
库米看到了一条简单的主线。
“拥有大量资金且习惯于超快行动的科技人员,与制造设备和建设设施、需要数年才能扩大生产规模的人员之间,存在脱节。”他说。(*)
译者:中慧言-王芳
专家指出,甲骨文从市场宠儿迅速沦为市场警示信号,这一转变揭示了人工智能热潮背后更深层的问题:无论过去两年投资者多么狂热,这个行业都无法摆脱物理定律的制约,也绕不开债务融资的现实。
一份糟糕的财报显示,甲骨文季度资本支出达120亿美元,高于分析师预期的82.5亿美元。此后,其股价较9月高点暴跌45%,本周内又下跌了14%。
业绩指引也表现疲软,并且该公司将2026财年的资本支出预测再度上调了150亿美元。其中大部分将投入到专用于OpenAI的数据中心。OpenAI是甲骨文在AI领域价值3000亿美元的合作伙伴。
甲骨文联合首席执行官克莱·马古伊克(Clay Magouyrk)在本周的财报电话会议上表示:“我们在全球交付能力方面设定了雄心勃勃且可实现的目标。”
投资者担忧甲骨文将如何支付这些巨额开支,因为其核心收入来源——云收入和云基础设施销售——也未达到华尔街的预期。分析师将其AI建设描述为债务驱动型,尽管该公司在文件中并未明确将特定债务与具体资本项目挂钩。
到了上周五,连甲骨文AI战略的“皇冠明珠”——其OpenAI数据中心——也出现了裂痕。彭博社披露,由于“劳动力和材料短缺”,甲骨文已将部分美国OpenAI数据中心的完工时间从2027年推迟到2028年。
“他们遇到劳动力和材料短缺是完全有可能的,”数据中心研究员乔纳森·库米(Jonathan Koomey)表示,他曾为IBM和AMD等公用事业公司和超大规模供应商提供咨询。在他看来,AI热潮正直接撞上数字速度与物理速度之间的差异。“比特世界瞬息万变。原子世界则不然。而数据中心正是这两个世界碰撞的地方。”
尽管彭博社未明确指出哪些具体设施被延迟,但库米表示,一个可能的候选项目是“木星计划”(Project Jupiter)。这是甲骨文计划在新墨西哥州偏远地区建设的巨型数据中心园区。当地报道将“木星计划”描述为一个耗资超过1600亿美元的超级园区,是迄今最具雄心的AI基础设施项目之一,也是甲骨文为OpenAI提供算力承诺的核心部分。
库米描述了一个资本可以立即部署,但资本必须购买的设备却无法立即到位的行业。他解释说,涡轮机、变压器、专用冷却系统和高压设备的交付时间已延长至数年。大型变压器的交付可能需要四到五年。企业越来越多地依赖工业燃气轮机来建设微电网,其交付时间可能长达六到七年。
即使公司愿意支付溢价,生产这些部件的工厂也无法在一夜之间神奇地扩张,而受过安装培训的制造业劳动力已经捉襟见肘。AI公司可能希望以模型发布的速度推进,但建筑和公用事业部门运作的时间线根本不同。
库米明确指出,他所描述的物理约束适用于所有超大规模供应商,但甲骨文尤其令投资者担忧,因为它进入AI基础设施竞赛较晚,并且将其大部分资本支出绑定在了一个客户——OpenAI身上。
“每当投资发生巨大转变时,都会发生这种情况,”他说。“制造商最终会赶上,但不会马上。现实会介入。”
一旦财务限制因素显现,这种摩擦就变得更加清晰。尽管甲骨文股价暴跌引人注目,但债券市场的反应可能更重要。随着其信用风险指标飙升至2009年以来的最高水平,甲骨文的债券收益率暴涨,一些曾经是投资级的新发行债券现在像垃圾债券一样交易。这表明,向公司放贷的投资者——历史上对科技周期最清醒的观察者——正开始重新评估向AI建设放贷的风险。
过去几十年,科技公司的惯例是用盈利来支付增长。现在,包括甲骨文在内的许多公司正转向信贷市场,为其庞大的扩张提供资金。根据美国银行(Bank of America)的分析,五大AI超大规模供应商——谷歌(Google)、Meta、亚马逊(Amazon)、微软(Microsoft)和甲骨文——今年合计发行了约1210亿美元的债券,用于资助AI数据中心建设,这一发行水平远高于历史平均水平,标志着基础设施融资向债务融资的重大转变。
然而,在这五家公司中,甲骨文完成了一些规模最大的交易,例如其9月份180亿美元的债券发行。其债务总额约为1000亿美元。其他四家公司现金状况更强,信用评级更高(AA/A级,而甲骨文在BBB区间),并且能够产生大量的正向自由现金流。因此,虽然甲骨文并非唯一为AI支出而利用债务市场的科技巨头,但其债务规模、现金生成能力和信用评级使其成为杠杆率最高的公司之一。
债务投资者未必需要惊人的回报;他们只需要确定能连本带利收回资金。如果信心稍有动摇,收益率就会上升。
“这感觉像是1998年的时刻,”CloudBees首席执行官、互联网泡沫时期的前科技高管阿努吉·卡普尔(Anuj Kapur)告诉Axios。前景巨大,但回报显现的速度也存在巨大的不确定性。
库米看到了一条简单的主线。
“拥有大量资金且习惯于超快行动的科技人员,与制造设备和建设设施、需要数年才能扩大生产规模的人员之间,存在脱节。”他说。(*)
译者:中慧言-王芳
Oracle’s rapid descent from market darling to market warning sign is revealing something deeper about the AI boom, experts say: no matter how euphoric investors became over the last two years, the industry can’t outrun the laws of physics—or the realities of debt financing.
Shares of Oracle have plunged 45% from their September high and lost 14% this week after a messy earnings report revealed it spent $12 billion in quarterly capital expenditures, higher than the $8.25 billion expected by analysts.
Earnings guidance was also weak, and the company raised its forecast for fiscal 2026 capex by another $15 billion. The bulk of that is going into data centers dedicated to OpenAI, Oracle’s $300 billion partner in the AI cycle.
“We have ambitious achievable goals for capacity delivery worldwide,” Oracle co-CEO Clay Magouyrk said on an earnings call this week.
Investors worry how Oracle will pay for these massive outlays as its underlying revenue streams, cloud revenue and cloud-infrastructure sales, also fell short of Wall Street’s expectations. Analysts have described its AI buildout as debt-fueled, even though the company does not explicitly link specific debt to specific capital projects in its filings.
And by Friday, even the crown jewel of Oracle’s AI strategy—its OpenAI data centers—was showing cracks. Bloomberg disclosed that Oracle has pushed back completion of some U.S. data centers for OpenAI from 2027 to 2028 because of “labor and material shortages.”
“It’s perfectly plausible that they’re seeing labor and materials shortages,” said data-center researcher Jonathan Koomey, who has advised utilities and hyperscalers including IBM and AMD. In his view, the AI boom is running directly into the difference between digital speed and physical speed. “The world of bits moves fast. The world of atoms doesn’t. And data centers are where those two worlds collide.”
Although Bloomberg didn’t identify which specific facilities were being delayed, Koomey said one likely candidate is Project Jupiter, Oracle’s gargantuan data-center complex proposed for a remote stretch of New Mexico. Local reporting has described Jupiter as a $160 billion-plus mega-campus, one of the most ambitious AI infrastructure projects ever attempted and a core piece of Oracle’s commitment to provide compute to OpenAI.
Koomey describes an industry where capital can be deployed instantly, but the equipment that capital must buy cannot. The timelines for turbines, transformers, specialized cooling systems, and high-voltage gear have stretched into years, he explained. Large transformers can take four to five years to arrive. Industrial gas turbines, which companies increasingly rely on for building microgrids, can take six or seven.
Even if a company is willing to pay a premium, the factories that produce these components cannot magically expand overnight, and the manufacturing industry trained to install them is already stretched thin. AI companies may want to move at the pace of model releases, but the construction and utility sectors operate on a fundamentally different timeline.
Koomey made it clear that the physical constraints he describes apply to all hyperscalers, but Oracle worries investors in particular because it’s getting into the AI infrastructure game late and tying much of its capex to one customer, OpenAI.
“This happens every time there’s a massive shift in investment,” he said. “Eventually manufacturers catch up, but not right away. Reality intervenes.”
That friction becomes ever clearer once the financial limit enters the picture. While Oracle’s stock slide is dramatic, the bond-market reaction may be more important. Oracle’s bond yields blew out, with some newer notes that were once investment grade now trading like junk, as its credit-risk gauge hit the highest level since 2009. It signals that investors who lend to companies, historically the most sober observers of tech cycles, are beginning to reassess the risk of lending into the AI buildout.
For the past few decades, the norm for tech companies was to pay for growth with earnings. Now many of them, including Oracle, are turning to credit markets to fund their sprawling expansions. According to a Bank of America analysis, the five biggest AI hyperscalers—Google, Meta, Amazon, Microsoft and Oracle—have collectively issued roughly $121 billion in bonds this year to fund AI data-center buildouts, a level of issuance far above historical averages and one that signals a major shift toward debt financing for infrastructure.
Oracle, however, has made some of the biggest deals out of the five, like its $18 billion September bond sale. Its total stack of debt is roughly $100 billion. The other four are also in stronger cash positions and have higher credit ratings (AA/A vs Oracle in BBB area), and are able to generate large positive free cash flow. So while Oracle isn’t the only tech giant tapping the debt markets for its AI outlays, its size, cash generation, and credit ratings make it one of the most leveraged.
Debt investors do not necessarily need blowout returns; they just need certainty that they will get their money back, with interest. If confidence wavers even a little, yields rise.
“This feels like the 1998 moment,” Anuj Kapur, CEO of CloudBees and a former tech executive during the dot-com era, told Axios. There’s enormous promise, but also enormous uncertainty about how quickly the returns show up.
Koomey saw a simple throughline.
“You have a disconnect between the tech people who have lots of money and are used to moving super fast, and the people who make the equipment and build the facilities, who need years to scale up their manufacturing,” he said.
