首页 / 财富中文网 / 正文

连专家都直呼“神奇”的新技术,或成广大中风患者福音

财富中文网 2025-07-02 04:00:33

在过去几十年里,虽然医学界在治疗中风上取得了诸多进展,但是还有一些困难始终没有得到突破。比如医学界常说,治疗中风就是在与时间赛跑。中风患者的治疗每延误一分钟,患者出现长期脑损伤甚至死亡的风险就会上升一分。有专家表示,大脑每缺血一分钟,患者就会失去190万个左右的神经元,并且独立生活的能力就会缩短一周左右。

由于大多数中风都属于缺血性中风(即血栓阻塞了血氧向大脑的输送),因此治疗的关键就在于迅速清除血栓。不管血栓是大是小,密度如何,这一点都是至关重要的。但是经验证明,靠机械手段清除高密度血栓,是一个很难实现的任务。

虽然抢救时机和血栓密度这二者未必存在直接的关联,但这两件事对于抢救中风患者来说都至关重要。而斯坦福大学最新研究的一项技术,则有望改变中风患者的治疗方式。

斯坦福团队开发了一种叫做“毫微旋转器”的装置,它是一根配备了鳍片和狭缝的微型空心管,可以强力旋转。实验室和猪类试验的结果表明,该设备能够显著压缩血栓,缩小其体积,有助于医生快速取栓,而且通常一次操作即可成功。

斯坦福大学中风研究中心主任、该领域资深专家格雷格・阿尔伯斯表示:“这是一项有望改变游戏规则的技术,从试验结果看,它在临床中也很可能表现出良好的适用性。”

机械取栓术是一种侵入式的微创取栓术。现有的取栓方法主要包括用导管抽吸血栓,或者用支架抓取和移除血栓。这些技术的主要设计目的并非缩小血栓的体积。而斯坦福团队的毫微旋转器似乎总能做这一点,而且通常几秒钟就能达到压缩血栓的效果。

在6月4日发表于科学期刊《自然》的一篇论文中,斯坦福团队公布了毫微旋转器的一些早期测试数据。在血流模型测试和猪类实验中,毫微旋转器展现了最高能使血栓缩小95%的能力。斯坦福大学神经影像与神经介入科主任、该论文的联合作者杰里米・海特博士表示,在取栓能力上,“多数情况下,我们的技术效能比现有技术高出了一倍以上。”

据斯坦福大学工程师、该论文的第一作者赵苪可介绍,当毫微旋转器靠近血栓时,会同时向血栓施加一个压缩力和一个剪切力,将血红细胞从坚韧的纤维蛋白团块中释放出来。赵苪可表示,当他们第一次在实验室观察到这种现象时,甚至出乎了他们自己的意料。

赵苪可在接受《财富》采访时表示:“我们感到很神奇,因为即便我们观察到了这一现象,我们也没能很快弄清它的工作原理。”

这时,纤维蛋白的核心仍紧密地缠绕在毫微旋转器周转,但其体积已较之前显著缩小,且易于移除。(你可以想象一下,把一个棉花糖紧紧捏在手里的样子。)海特表示:“最疯狂的事,它在几秒钟内就能起到效果,它可以将血栓旋转成微小的栓块,并且在几秒钟内直接吸入导管。速度快得不可思议。”

研究人员表示,目前他们还有许多工作要做,包括进行全面的人体实验。不过只要人体实验结果接近实验室和猪类实验的表现,该技术就能彻底改变中风患者的治疗方式。

在美国,中风是第五大致死病因,美国每年约有近80万人确诊中风,其中约16万人死亡。其中大约90%的患者为缺血性中风(即与血栓有关)。缺血性中风患者通常会接受tPA等溶栓药物或者机械除栓治疗(有时是两者结合),但是机械取栓也常有失败的时候。

海特指出,在某些情况下,由于血栓体积过大,又或者血栓与血管壁粘连得过紧,导致支架或抽吸装置无法将其取出。还有些时候,由于血栓质地松散,在取栓过程中可能会碎裂成小块。一旦这些栓块被血流带到大脑更深处,有可能导致中风范围扩大,或者引发新的神经功能缺损。

赵苪可表示:“抽吸和支架取栓都存在较高的血栓碎裂风险,而毫微旋转器能有效阻止这种情况发生。”至少在实验室环境中是如此。

据专家介绍,现有的机械除栓装置,首次操作便成功除栓的几率通常不超过50%,而且在15%的案例中会完全失败。而首次取栓即成功疏通血管的患者,其临床预后要明显优于需要多次取栓的患者。

布朗大学诊断影像学系主任马雷什・贾亚拉曼表示:“如果首次取栓就能疏通血管,那么患者的预后会比需要取栓两次、三次甚至四次的患者更好。当然,我也需要确认毫微旋转器对人体是否安全有效。如果答案是肯定的,那么它有望彻底改革我们对清除脑部血栓的认知。”

赵苪可表示,她和她的同事们一开始并不是想解决除栓的问题。她本来是研究微型机器人的,她本想搞出一款基于几何折叠技术的微型机器人,让它可以在血管里游动。这种仍在研发中的机器人由外部磁场供能,未来将具备向体内靶向区域输送药物、执行诊断任务的能力,甚至有朝一日能够携带手术器械和摄像头。

赵苪可表示,这种微型机器人在旋转的时候会产生一种“高度局部化的强吸力”。“所以我们就想,能不能用这种吸力来吸住血栓?这个想法非常简单,也是一种非常直截了当的想法。”

海特指出,在实验室的脑动脉血流模型中,毫微型旋转器实现了500多次100%有效取栓。在猪类实验中,在90.3%的首次取栓操作中,让受阻血管恢复了至少一半的血流量,成功率几乎是抽吸技术平均水平的两倍。而在处理一些最难清除的血栓时,它疏通动脉的成功率更是达到传统抽吸技术的近4倍。

海特表示:“我认为,该装置有望为急性缺血性中风的治疗事带来颠覆性变革。如果它在清除人体血栓时的成功率也能像之前的实验一样高——我们预计应该会是这样的,那么,毫微旋转器将有望挽救成千上万人的生命,并且大幅降低中风患者的致残率。”

接下来,就是要对毫微旋转器开展人体实验。田纳西大学健康科学中心神经外科医生、中风专家亚瑟・亚当指出,在人体实验阶段,值得关注的问题有:这种新型疗法对人体脑组织有何影响,以及当细胞和血栓碎片被毫微旋转器从纤维蛋白中释放出来之后,其行为表现如何。

亚当指出:“人体试验是至关重要的,而且人体实验的结果,有时会与早期研究发现存在显著差异。”

尽管如此,这项技术的发展前景依然被专家们广泛看好。弗吉尼亚大学医学院放射学与医学影像学系主任科林·德代恩表示:“这是一种令人兴奋的新装置,拥有巨大的潜力。如果它在人体实验中的表现与之前一样出色,能够提高血管再通率——也就是成功疏通受阻的脉动脉、心脏动脉或肺部动脉的几率。那么它将显著改善中风、心梗和肺动脉栓塞患者的预后。”

这项技术现在还处于起步阶段。赵苪可及其同事认为,将来,微型机器人版的毫微旋转器有可能能够无束缚地在血管内直接游动,用于治疗血栓、脑动脉瘤、肾结石等疾病。同时,该团队已在加州成立了一家公司,着手推进毫微旋转器的临床试验工作。

赵苪可表示:“随着中风患者群体不断扩大,加上这项技术前景广阔,我认为,我们将来有望拯救大量患者的生命。我们希望尽快将这项技术应用在人体上,越快越好。”(*)

译者:朴成奎

在过去几十年里,虽然医学界在治疗中风上取得了诸多进展,但是还有一些困难始终没有得到突破。比如医学界常说,治疗中风就是在与时间赛跑。中风患者的治疗每延误一分钟,患者出现长期脑损伤甚至死亡的风险就会上升一分。有专家表示,大脑每缺血一分钟,患者就会失去190万个左右的神经元,并且独立生活的能力就会缩短一周左右。

由于大多数中风都属于缺血性中风(即血栓阻塞了血氧向大脑的输送),因此治疗的关键就在于迅速清除血栓。不管血栓是大是小,密度如何,这一点都是至关重要的。但是经验证明,靠机械手段清除高密度血栓,是一个很难实现的任务。

虽然抢救时机和血栓密度这二者未必存在直接的关联,但这两件事对于抢救中风患者来说都至关重要。而斯坦福大学最新研究的一项技术,则有望改变中风患者的治疗方式。

斯坦福团队开发了一种叫做“毫微旋转器”的装置,它是一根配备了鳍片和狭缝的微型空心管,可以强力旋转。实验室和猪类试验的结果表明,该设备能够显著压缩血栓,缩小其体积,有助于医生快速取栓,而且通常一次操作即可成功。

斯坦福大学中风研究中心主任、该领域资深专家格雷格・阿尔伯斯表示:“这是一项有望改变游戏规则的技术,从试验结果看,它在临床中也很可能表现出良好的适用性。”

机械取栓术是一种侵入式的微创取栓术。现有的取栓方法主要包括用导管抽吸血栓,或者用支架抓取和移除血栓。这些技术的主要设计目的并非缩小血栓的体积。而斯坦福团队的毫微旋转器似乎总能做这一点,而且通常几秒钟就能达到压缩血栓的效果。

在6月4日发表于科学期刊《自然》的一篇论文中,斯坦福团队公布了毫微旋转器的一些早期测试数据。在血流模型测试和猪类实验中,毫微旋转器展现了最高能使血栓缩小95%的能力。斯坦福大学神经影像与神经介入科主任、该论文的联合作者杰里米・海特博士表示,在取栓能力上,“多数情况下,我们的技术效能比现有技术高出了一倍以上。”

据斯坦福大学工程师、该论文的第一作者赵苪可介绍,当毫微旋转器靠近血栓时,会同时向血栓施加一个压缩力和一个剪切力,将血红细胞从坚韧的纤维蛋白团块中释放出来。赵苪可表示,当他们第一次在实验室观察到这种现象时,甚至出乎了他们自己的意料。

赵苪可在接受《财富》采访时表示:“我们感到很神奇,因为即便我们观察到了这一现象,我们也没能很快弄清它的工作原理。”

这时,纤维蛋白的核心仍紧密地缠绕在毫微旋转器周转,但其体积已较之前显著缩小,且易于移除。(你可以想象一下,把一个棉花糖紧紧捏在手里的样子。)海特表示:“最疯狂的事,它在几秒钟内就能起到效果,它可以将血栓旋转成微小的栓块,并且在几秒钟内直接吸入导管。速度快得不可思议。”

研究人员表示,目前他们还有许多工作要做,包括进行全面的人体实验。不过只要人体实验结果接近实验室和猪类实验的表现,该技术就能彻底改变中风患者的治疗方式。

在美国,中风是第五大致死病因,美国每年约有近80万人确诊中风,其中约16万人死亡。其中大约90%的患者为缺血性中风(即与血栓有关)。缺血性中风患者通常会接受tPA等溶栓药物或者机械除栓治疗(有时是两者结合),但是机械取栓也常有失败的时候。

海特指出,在某些情况下,由于血栓体积过大,又或者血栓与血管壁粘连得过紧,导致支架或抽吸装置无法将其取出。还有些时候,由于血栓质地松散,在取栓过程中可能会碎裂成小块。一旦这些栓块被血流带到大脑更深处,有可能导致中风范围扩大,或者引发新的神经功能缺损。

赵苪可表示:“抽吸和支架取栓都存在较高的血栓碎裂风险,而毫微旋转器能有效阻止这种情况发生。”至少在实验室环境中是如此。

据专家介绍,现有的机械除栓装置,首次操作便成功除栓的几率通常不超过50%,而且在15%的案例中会完全失败。而首次取栓即成功疏通血管的患者,其临床预后要明显优于需要多次取栓的患者。

布朗大学诊断影像学系主任马雷什・贾亚拉曼表示:“如果首次取栓就能疏通血管,那么患者的预后会比需要取栓两次、三次甚至四次的患者更好。当然,我也需要确认毫微旋转器对人体是否安全有效。如果答案是肯定的,那么它有望彻底改革我们对清除脑部血栓的认知。”

赵苪可表示,她和她的同事们一开始并不是想解决除栓的问题。她本来是研究微型机器人的,她本想搞出一款基于几何折叠技术的微型机器人,让它可以在血管里游动。这种仍在研发中的机器人由外部磁场供能,未来将具备向体内靶向区域输送药物、执行诊断任务的能力,甚至有朝一日能够携带手术器械和摄像头。

赵苪可表示,这种微型机器人在旋转的时候会产生一种“高度局部化的强吸力”。“所以我们就想,能不能用这种吸力来吸住血栓?这个想法非常简单,也是一种非常直截了当的想法。”

海特指出,在实验室的脑动脉血流模型中,毫微型旋转器实现了500多次100%有效取栓。在猪类实验中,在90.3%的首次取栓操作中,让受阻血管恢复了至少一半的血流量,成功率几乎是抽吸技术平均水平的两倍。而在处理一些最难清除的血栓时,它疏通动脉的成功率更是达到传统抽吸技术的近4倍。

海特表示:“我认为,该装置有望为急性缺血性中风的治疗事带来颠覆性变革。如果它在清除人体血栓时的成功率也能像之前的实验一样高——我们预计应该会是这样的,那么,毫微旋转器将有望挽救成千上万人的生命,并且大幅降低中风患者的致残率。”

接下来,就是要对毫微旋转器开展人体实验。田纳西大学健康科学中心神经外科医生、中风专家亚瑟・亚当指出,在人体实验阶段,值得关注的问题有:这种新型疗法对人体脑组织有何影响,以及当细胞和血栓碎片被毫微旋转器从纤维蛋白中释放出来之后,其行为表现如何。

亚当指出:“人体试验是至关重要的,而且人体实验的结果,有时会与早期研究发现存在显著差异。”

尽管如此,这项技术的发展前景依然被专家们广泛看好。弗吉尼亚大学医学院放射学与医学影像学系主任科林·德代恩表示:“这是一种令人兴奋的新装置,拥有巨大的潜力。如果它在人体实验中的表现与之前一样出色,能够提高血管再通率——也就是成功疏通受阻的脉动脉、心脏动脉或肺部动脉的几率。那么它将显著改善中风、心梗和肺动脉栓塞患者的预后。”

这项技术现在还处于起步阶段。赵苪可及其同事认为,将来,微型机器人版的毫微旋转器有可能能够无束缚地在血管内直接游动,用于治疗血栓、脑动脉瘤、肾结石等疾病。同时,该团队已在加州成立了一家公司,着手推进毫微旋转器的临床试验工作。

赵苪可表示:“随着中风患者群体不断扩大,加上这项技术前景广阔,我认为,我们将来有望拯救大量患者的生命。我们希望尽快将这项技术应用在人体上,越快越好。”(*)

译者:朴成奎

For all of the advancement in treating stroke victims over the past couple of decades, some concerns have remained almost constant. In medicine, we like to say that “time is brain,” meaning that every moment a stroke goes untreated, the potential for long-term brain damage or death escalates. In fact, every minute that the brain goes without blood flow, the average patient loses around 1.9 million neurons and about a week of independent life, experts say.

As the vast majority of strokes are ischemic, with a blood clot blocking the flow of oxygen to the brain, clearing that clot swiftly is critical. This is true whether the clot is small or large and regardless of its density—but reliably removing the densest clots via mechanical means has proved an elusive task.

Though these concerns, time and density, are not necessarily linked, both matter—one reason, researchers suggest, that a newly developed technology from Stanford University holds the potential to reshape how stroke patients are treated.

The device, called a milli-spinner, is a tiny, powerfully rotating hollow tube outfitted with fins and slits. In action, both lab and swine tests demonstrate the ability to dramatically compact and shrink the size of blood clots, making it easier to remove them quickly and effectively—often on the first try.

“This has the potential to be a game changer,” says Greg Albers, director of the Stanford University Stroke Center and a longtime expert in the field. “The results are likely to translate well to clinical trials.”

Mechanical thrombectomy is a minimally invasive procedure by which blood clots are removed. Existing thrombectomy methods, which involve aspirating clots via a catheter or trying to grab and remove them through a stent, are not designed primarily to reduce the size of blood clots. The milli-spinner appears to do so almost routinely—and very quickly, sometimes in a matter of seconds.

In a paper published June 4 in the scientific journal Nature, the milli-spinner boasted some audacious early numbers. In flow model tests and swine experiments, the thrombectomy device, inserted via a catheter, demonstrated the capacity to shrink clots by up to 95%. “For most cases, we were more than doubling the efficacy of current technology” in terms of opening the artery, says Dr. Jeremy Heit, MD, PhD, chief of neuroimaging and neuro-intervention at Stanford and coauthor of the study.

Placed close to a clot, the milli-spinner exerts both compression and shear forces to release red blood cells from the sometimes-dense fibrin that has bound it in a clump—a somewhat unexpected development when it was first observed in the lab, says Renee Zhao, the Stanford engineer who designed the milli-spinner and was lead author of the Nature study.

“It was magic to us, because even after we saw the phenomena, it was not very straightforward to directly figure out the working mechanism,” Zhao tells Fortune.

A fibrin core remains tightly bound around the milli-spinner, but it is now dramatically smaller than before, and easily removable. (Imagine placing some cotton candy in your hand and then closing your fist tight.) “What’s crazy is, it works in seconds—it literally will spin this thing into a tiny clot and just suck it into the catheter in seconds,” says Heit. “It’s incredibly fast.”

Much work remains, the researchers say, including full-scale human trials. But if the results are even close to what’s been achieved in the lab and swine work, the device could alter the treatment path for an all-too-common, all-too-serious medical issue.

Strokes are the fifth-leading cause of death in the U.S., with about 160,000 deaths a year among the nearly 800,000 cases diagnosed annually. Roughly nine in 10 strokes are ischemic, or clot-related. Patients with ischemic strokes are often treated with clot-busting drugs like tPA or thrombectomy (sometimes both), but the mechanical techniques still encounter failures.

In some cases, a clot is simply too large to be extracted by a stent or aspiration device, or it may be too firmly adhered to a vessel wall. In others, because clots are crumbly, small bits may break off during the retrieval attempt. The blood flow can take them further into the brain, potentially making the size of a stroke bigger or causing a new deficit, says Heit.

“Both aspiration and stent retrievers have a high risk of generating fragmentation,” Zhao says. “The milli-spinner actually prevents it from happening,” at least in the lab.

Current thrombectomy devices successfully remove clots less than 50% of the time on the first try, and in about 15% of cases they fail altogether, experts say. It’s important because people in whom the blockage is removed on the first attempt with thrombectomy have better clinical outcomes than those who require multiple passes.

“The outcomes are much better than if it takes you two, three, four tries to get everything open,” says Maresh Jayaraman, chair of diagnostic imaging at Brown University. “Obviously, we need to know that (the milli-spinner) can be safe and effective in humans. If it is, it has the potential to dramatically revolutionize how we think about removing blood clots from the brain.”

Zhao says she and her colleagues weren’t actually trying to solve this issue, at least not initially. Rather, the engineer had been working on millirobots—tiny, origami-based spinning devices capable of swimming untethered through the bloodstream. Propelled by an external magnetic field, the millirobots, which are still in development, may be able to deliver medicine to targeted regions in the body, perform diagnostic tasks, or perhaps one day even carry instruments or cameras.

The spinning millirobots generate “a highly localized, very strong suction,” says Zhao. “We were thinking, okay, can we use that suction to suck a clot? It was just extremely simple—I mean, a very straightforward way of thinking.”

In the cerebral artery flow model in the lab, Heit says, the milli-spinner was 100% effective at removing clots in more than 500 attempts. In pigs, the device restored at least half of blood flow to blocked blood vessels 90.3% of the time on the first try, nearly twice the average achieved by aspiration. And it was nearly fourfold better at completely opening the artery for the toughest clots.

“I expect (the device) to be a sea-change in technology for the treatment of acute ischemic stroke patients,” Heit says. “If blood clots are removed at the high success rates in humans as they are in our experiments, which we expect to be the case, the milli-spinner will save tens of thousands of lives or more, and substantially reduce disability in treated patients.”

Human clinical trials are the next step. Areas to watch, says Arthur Adam, a neurosurgeon and stroke expert at University of Tennessee Health Sciences Center, include how human brain tissue is affected by the new thrombectomy method, and how the cells and debris behave once they’re liberated from the fibrin by the milli-spinner.

“Human trials are essential, and they sometimes show very different results than what we see in early results,” says Adam.

Still, the development appears promising. “It is a very exciting new device, with great potential,” says Colin Derdeyn, chair of radiology and medical imaging at the University of Virginia School of Medicine. “If it performs in people as well as it does in these models, it will improve recanalization rates—how frequently we are able to open a blocked artery in the brain, heart, or lung. This will lead to better outcomes in patients with stroke, heart attack and pulmonary embolism.”

It may also represent only the front end of the technology. Zhao and her colleagues think the untethered, robotic version of the milli-spinner will be able to swim directly inside blood vessels to treat blood clots, brain aneurysms, kidney stones, and other conditions. In the meantime, the team has formed a company in California to proceed with clinical trials on the milli-spinner.

“Considering the growing patient pool and this very promising technology, I think we can potentially save a lot of patients’ lives,” Zhao says. “We want to see this technology in humans—and the sooner, the better.”

*